MAX materials and MXene materials are new two-dimensional materials that have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and also have shown broad application prospects in lots of fields. This is a detailed guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is a layered carbon nitride inorganic non-metallic material composed of M, A, X elements around the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the primary group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, three of the elements of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, these are popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is actually a new form of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, consisting of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A means the main-group elements, and X refers to the components of C and N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAXenes and MXenes are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have a variety of applications in structural materials. For example, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also have better photocatalytic properties, and electrochemical properties may be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often found in energy materials. As an example, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which can be used as a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The outer lining of MXene materials can communicate with more functional atoms and molecules, and a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually are the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics may be realized.
Properties of MXene materials
MXene materials are a new type of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., along with good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. For example, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials can also be used as catalysts in fuel cells to enhance the activity and stability of the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, and other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. For example, MXene materials can be used gas sensors in environmental monitoring, which can realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, with all the continuous progress of science and technology and the improving demand for services for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials will likely be further expanded and improved. The subsequent aspects may become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. In the future, new preparation technologies and methods can be further explored to comprehend a more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, but there is still room for further optimization. Down the road, the composition, structure, surface treatment as well as other aspects of the content can be studied and improved in depth to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be commonly used in numerous fields, but you may still find many potential application areas to get explored. Down the road, they can be further expanded, like in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in lots of fields. With the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.